复合材料科学与工程
4 结 论
本文针对弹性波波型转换现象ꎬ将传统复合材
料与超材料的概念相结合ꎬ研究了波型转换效率与
复合材料各向异性特性、铺层角度之间的关系ꎬ建立
了波型转换复合材料的设计方法ꎬ实现了纵波到横
波的高效转换ꎬ为结构功能一体化复合材料设计提
供了新的思路ꎮ
基于 TFPI 理论ꎬ通过改变复合材料单层板的纤
维铺设角度以及层叠顺序来设计层合板的各向异
性ꎬ仿真求解了相应层合板的波型转换效率ꎮ 研究
结果表明:在满足 TFPI 干涉条件的前提下ꎬ波型转
换效率曲线具有良好的干涉周期性模式ꎻ随着层合
板的等效刚度阵系数越接近极化方向条件ꎬ波型转
换效率越高ꎬ最高可达 89%ꎮ
参考文献
[1] 陈波ꎬ 翁少东ꎬ 温卫东ꎬ 等. 单向碳/ 碳复合材料高温拉伸行为
失效机理研究[J]. 复合材料科学与工程ꎬ 2021(2): 89 ̄94.
[2] 石南南ꎬ 亢志宽ꎬ 王利辉ꎬ 等. 复合材料层合结构抗冲击性能研
究进展[J]. 复合材料科学与工程ꎬ 2021(2): 115 ̄122.
[3] NURMALIAꎬ NAKAMURA Nꎬ OGI Hꎬ et al. Mode conversion and
total reflection of torsional waves for pipe inspection [ J]. Japanese
Journal of Applied Physicsꎬ 2013ꎬ 52(7): 07HC14.
[4] ZHANG Cꎬ ZHANG Z Yꎬ JI H Lꎬ et al. Mode conversion behavior
of guided wave in glass fiber reinforced polymer with fatigue damage
accumulation[J]. Composite Science and Technologyꎬ2020ꎬ192:108073.
[5] LIU Z Yꎬ ZHANG X Xꎬ MAO Y Wꎬ et al. Locally resonant sonic
materials[J]. Scienceꎬ 2000ꎬ 289(5485): 1734 ̄1736.
[6] WU Lꎬ GENG Qꎬ LI Y M. A locally resonant elastic metamaterial
based on coupled vibration of internal liquid and coating layer[ J].
Journal of Sound and Vibrationꎬ 2020ꎬ 468: 115102.
[7] KWEUN J Mꎬ LEE H Jꎬ OH J Hꎬ et al. Transmodal Fabry ̄Perot
resonance: Theory and realization with elastic metamaterials [ J].
Physical Review Lettersꎬ 2017ꎬ 118(20): 205901.
[8] YANG X Wꎬ KIM Y Y. Asymptotic theory of bimodal quarter ̄wave
impedance matching for full mode ̄converting transmission[J]. Phys ̄
ical Review Bꎬ 2018ꎬ 98(14): 144110.
[9] YANG X Wꎬ KWEUN J Mꎬ KIM Y Y. Monolayer metamaterial for
full mode ̄converting transmission of elastic waves[J]. Applied Phys ̄
ics Lettersꎬ 2019ꎬ 115(7): 071901.
[10] SHEN X Yꎬ LI Yꎬ JIANG C Rꎬ et al. Thermal cloak ̄concentrator
[J]. Applied Physics Lettersꎬ 2016ꎬ 109(3): 031907.
[11] LIU Z Yꎬ CHAN C Tꎬ SHENG P. Analytic model of phononic crys ̄
tals with local resonances[J]. Physical Review Bꎬ 2005ꎬ 71(1):
014103.
[12] HUANG H Hꎬ SUN C Tꎬ HUANG G L. On the negative effective
mass density in acoustic metamaterials[ J]. International Journal of
Engineering Scienceꎬ 2009ꎬ 47(4): 610 ̄617.
[13] HUANG H Hꎬ SUN C T. Wave attenuation mechanism in an acous ̄
tic metamaterial with negative effective mass density[J]. New Jour ̄
nal of Physicsꎬ 2009ꎬ 11(1): 013003.
[14] LEE S Hꎬ PARK C Mꎬ SEO Y Mꎬ et al. Acoustic metamaterial
with negative modulus[J]. Journal of Physics: Condensed Matterꎬ
2009ꎬ 21: 175704.
[15] FANG Nꎬ XI D Jꎬ XU J Yꎬ et al. Ultrasonic metamaterials with
negative modulus[J]. Nature Materialsꎬ 2006ꎬ 5(6): 452 ̄456.
[16] GUENNEAU Sꎬ MOVCHAN Aꎬ PETURSSON Gꎬ et al. Acoustic
metamaterials for sound focusing and confinement[J]. New Journal
of Physicsꎬ 2007(9): 399.
[17] HU X Hꎬ HO K Mꎬ CHAN C Tꎬ et al. Homogenization of acoustic
metamaterials of Helmholtz resonators in fluid[J]. Physical Review
Bꎬ 2008ꎬ 77(17): 172301.
[18] DING C Lꎬ HAO L Mꎬ ZHAO X P. Two ̄dementional acoustic meta ̄
material with negative modulus [ J]. Journal of Applied Physicsꎬ
2010ꎬ 108(7): 074911.
[19] LEE S Hꎬ PARK C Mꎬ SEO Y Mꎬ et al. Composite acoustic medi ̄
um with simultaneously negative density and modulus[J]. Physical
Review Lettersꎬ 2010ꎬ 104(5): 054301.
[20] ZHU Rꎬ LIU X Nꎬ HU G Kꎬ et al. Negative refraction of elastic
waves at the deep ̄subwavelength scale in a single ̄phase metamaterial
[J]. Nature Communicationsꎬ 2014(5): 5510.
[21] ZHU Rꎬ LIU X Nꎬ HU G K. Study of anomalous wave propagation
and reflection in semi ̄infinite elastic metamaterials[ J]. Wave Mo ̄
tionꎬ 2015ꎬ 55: 73 ̄83.
[22] WU Yꎬ LAI Yꎬ ZHANG Z Q. Elastic metamaterials with simultane ̄
ously negative effective shear modulus and mass density[J]. Physical
Review Lettersꎬ 2011ꎬ 107(10): 105506.
[23] YANG X Wꎬ KWEUN J Mꎬ KIM Y Y. Theory for perfect transmodal
Fabry ̄Perot Interferometer[J]. Scientific Reportsꎬ 2018(8): 69.
[24] 沈观林ꎬ 胡更开ꎬ 刘彬. 复合材料力学[M]. 北京: 清华大学出
版社ꎬ 2013.
2021 年第 12 期 11
???????????????????????????????????????????????