development of Ustilago maydis studied by RNA-seq analysis. Plant Cell 30:
300–323.
Lanver D, Tollot M, Schweizer G, Lo Presti L, Reissmann S, Ma L-S, Schuster
M, Tanaka S, Liang L, Ludwig N et al. 2017. Ustilago maydis effectors and
their impact on virulence. Nature Reviews Microbiology 15: 409.
Laurie JD, Ali S, Linning R, Mannhaupt G, Wong P, Guldener U, ¨
Munsterk ¨ otter M, Moore R, Kahmann R, Bakkeren G ¨ et al. 2012. Genome
comparison of barley and maize smut fungi reveals targeted loss of RNA
silencing components and species-specific presence of transposable elements.
Plant Cell 24: 1733.
Li X, Lin H, Zhang W, Zou Y, Zhang J, Tang X, Zhou J-M. 2005. Flagellin
induces innate immunity in nonhost interactions that is suppressed by
Pseudomonas syringae effectors. Proceedings of the National Academy of Sciences,
USA 102: 12990.
Liang X, Zhou J-M. 2018. Receptor-like cytoplasmic kinases: central players in
plant receptor kinase–mediated signaling. Annual Review of Plant Biology 69:
267–299.
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using
real-time quantitative PCR and the 2−ΔΔCT method. Methods 25: 402–408.
Ma L-S, Wang L, Trippel C, Mendoza-Mendoza A, Ullmann S, Moretti M,
Carsten A, Kahnt J, Reissmann S, Zechmann B et al. 2018. The Ustilago
maydis repetitive effector Rsp3 blocks the antifungal activity of mannosebinding maize proteins. Nature Communications 9: 1711.
Marques J, Hoy JW, Appezzatodagloria B, Viveros A, Vieira M, Baisakh N. ´
2018. Sugarcane cell wall-associated defense responses to infection by
Sporisorium scitamineum. Frontiers in Plant Science 9: 968.
Marques JPR, Appezzatodagloria B, Piepenbring M, Massola NS, ´
Monteirovitorello CB, Vieira MLC. 2017. Sugarcane smut: shedding light on
the development of the whip-shaped sorus. Annals of Botany 119: 815–827.
Mentlak TA, Kombrink A, Shinya T, Ryder LS, Otomo I, Saitoh H, Terauchi
R, Nishizawa Y, Shibuya N, Thomma BPHJ et al. 2012. Effector-mediated
suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary
for rice blast disease. Plant Cell 24: 322.
Misas Villamil JC, Mueller AN, Demir F, Meyer U, Okmen B, Schulze H ¨ uynck ¨
J, Breuer M, Dauben H, Win J, Huesgen PF et al. 2019. A fungal substrate
mimicking molecule suppresses plant immunity via an inter-kingdom
conserved motif. Nature Communications 10: 1576.
Mueller AN, Ziemann S, Treitschke S, Aßmann D, Doehlemann G. 2013.
Compatibility in the Ustilago maydis-maize interaction requires inhibition of
host cysteine proteases by the fungal effector Pit2. PLoS Pathogens 9: e1003177.
Peters LP, Carvalho G, Vilhena MB, Creste S, Azevedo RA, Monteiro-Vitorello
CB. 2017. Functional analysis of oxidative burst in sugarcane smut-resistant
and -susceptible genotypes. Planta 245: 749–764.
Que Y, Su Y, Guo J, Wu Q, Xu L. 2014a. A global view of transcriptome
dynamics during Sporisorium scitamineum challenge in sugarcane by RNA-Seq.
PLoS ONE 9: e106476.
Que Y, Xu L, Wu Q, Liu Y, Ling H, Liu Y, Zhang Y, Guo J, Su Y,
Chen J et al. 2014b. Genome sequencing of Sporisorium scitamineum
provides insights into the pathogenic mechanisms of sugarcane smut. BMC
Genomics 15: 996.
Rody HVS, Bombardelli RGH, Creste S, Camargo LEA, Van Sluys M-A,
Monteiro-Vitorello CB. 2019. Genome survey of resistance gene analogs in
sugarcane: genomic features and differential expression of the innate immune
system from a smut-resistant genotype. BMC Genomics 20: 809.
Ross A, Yamada K, Hiruma K, Yamashita-Yamada M, Lu X, Takano Y, Tsuda
K, Saijo Y. 2014. The Arabidopsis PEPR pathway couples local and systemic
plant immunity. EMBO Journal 33: 62–75.
Sanchez-Elordi E, de los Rı´os LM, Vicente C, Legaz M-E. 2019. ´ Polyamines
levels increase in smut teliospores after contact with sugarcane glycoproteins as
a plant defensive mechanism. Journal of Plant Research 132: 405–417.
Schaker PD, Palhares AC, Taniguti LM, Peters LP, Creste S, Aitken KS, Van
Sluys MA, Kitajima JP, Vieira ML, Monteiro-Vitorello CB. 2016. RNAseq
transcriptional profiling following whip development in sugarcane smut
disease. PLoS ONE 11: e0162237.
Schilling L, Matei A, Redkar A, Walbot V, Doehlemann G. 2014. Virulence of
the maize smut Ustilago maydis is shaped by organ-specific effectors. Molecular
Plant Pathology 15: 780–789.
Schuster M, Schweizer G, Kahmann R. 2018. Comparative analyses of secreted
proteins in plant pathogenic smut fungi and related basidiomycetes. Fungal
Genetics and Biology 112: 21–30.
Schweizer G, Munch K, Mannhaup G, Schirawski J, Kahmann R, Dutheil JY. ¨
2018. Positively selected effector genes and their contribution to virulence in
the smut fungus Sporisorium reilianum. Genome Biology and Evolution 10: 629–
645.
Shan L, He P, Li J, Heese A, Peck SC, Nurnberger T, Martin GB, Sheen J. ¨
2008. Bacterial effectors target the common signaling partner BAK1 to disrupt
multiple MAMP receptor-signaling complexes and impede plant immunity.
Cell Host & Microbe 4: 17–27.
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N,
Schwikowski B, Ideker T. 2002. CYTOSCAPE: a software environment for
integrated models of biomolecular interaction networks. Genome Research
2003: 2498–2504.
Singh N, Somai BM, Pillay D. 2004. Smut disease assessment by PCR and
microscopy in inoculated tissue cultured sugarcane cultivars. Plant Science 167:
987–994.
Smakowska-Luzan E, Mott GA, Parys K, Stegmann M, Howton TC,
Layeghifard M, Neuhold J, Lehner A, Kong J, Grunwald K ¨ et al. 2018. An
extracellular network of Arabidopsis leucine-rich repeat receptor kinases.
Nature 553: 342–346.
Su Y, Wang S, Guo J, Xue B, Xu L, Que Y. 2013. A TaqMan real-time PCR
assay for detection and quantification of Sporisorium scitamineum in sugarcane.
Scientific World Journal 2013: 942682.
Su Y, Xiao X, Ling H, Huang N, Liu F, Su W, Zhang Y, Xu L, Muhammad K,
Que Y. 2019. A dynamic degradome landscape on miRNAs and their
predicted targets in sugarcane caused by Sporisorium scitamineum stress. BMC
Genomics 20: 57.
Suarez-Rodriguez MC, Adams-Phillips L, Liu Y, Wang H, Su SH, Jester PJ,
Zhang S, Bent AF, Krysan PJ. 2007. MEKK1 is required for flg22-induced
MPK4 activation in Arabidopsis plants. Plant Physiology 143: 661–669.
Sun X, Yu G, Li J, Liu J, Wang X, Zhu G, Zhang X, Pan H. 2018. AcERF2, an
ethylene-responsive factor of Atriplex canescens, positively modulates osmotic
and disease resistance in Arabidopsis thaliana. Plant Science 274: 32–43.
Sundar AR, Barnabas EL, Malathi P, Viswanathan R. 2012. A mini-review on
smut disease of sugarcane caused by Sporisorium scitamineum. Shanghai, China:
InTech China.
Tanaka S, Brefort T, Neidig N, Djamei A, Kahnt J, Vermerris W, Koenig S,
Feussner K, Feussner I, Kahmann R. 2014. A secreted Ustilago maydis effector
promotes virulence by targeting anthocyanin biosynthesis in maize. eLife 3:
e01355.
Tang D, Zhou J-M. 2016. PEPRs spice up plant immunity. EMBO Journal 35:
4–5.
Tang J, Han Z, Sun Y, Zhang H, Gong X, Chai J. 2015. Structural basis for
recognition of an endogenous peptide by the plant receptor kinase PEPR1. Cell
Research 25: 110–120.
Tarun SZ Jr., Sachs AB. 1996. Association of the yeast poly(A) tail binding
protein with translation initiation factor eIF-4G. EMBO Journal 15: 7168–
7177.
Wang J, Yao W, Wang L, Ma F, Tong W, Wang C, Bao R, Jiang C, Yang Y,
Zhang J et al. 2017. Overexpression of VpEIFP1, a novel F-box/Kelch-repeat
protein from wild Chinese Vitis pseudoreticulata, confers higher tolerance to
powdery mildew by inducing thioredoxin z proteolysis. Plant Science 263: 142–
155.
Wang W, Feng B, Zhou J-M, Tang D. 2020. Plant immune signaling: advancing
on two frontiers. Journal of Integrative Plant Biology 62: 2–24.
Wawra S, Belmonte R, Lobach L, Saraiva M, Willems A, van West P. 2012.
Secretion, delivery and function of oomycete effector proteins. Current Opinion
in Microbiology 15: 685–691.
Xu Q, Tang C, Wang X, Sun S, Zhao J, Kang Z, Wang X. 2019. An effector
protein of the wheat stripe rust fungus targets chloroplasts and suppresses
chloroplast function. Nature Communications 10: 5571.
Xu S, Liao C-J, Jaiswal N, Lee S, Yun D-J, Lee SY, Garvey M, Kaplan I,
Mengiste T. 2018. Tomato PEPR1 ortholog receptor-like kinase1 regulates
responses to systemin, necrotrophic fungi, and insect herbivory. Plant Cell 30:
2214–2229.
New Phytologist (2021)
www.newphytologist.com
2021 The Authors
New Phytologist 2021 New Phytologist Foundation
Research
New
14 Phytologist
28